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Abstract—Artificial intelligence has demonstrated its ability to
solve lots of critical tasks, but at the cost of high computational
requirements. Different hardware has been proposed to provide
this computational power, each one with its benefits and draw-
backs. However, the exploration of the different alternatives in
an easy an integrated way is still a complex task. To solve so, this
paper proposes a UML-based design flow where neural networks
are initially specified and then automatically generated and
trained using TensorFlow. The approach also enables automatic
mapping of models to CPU, GPU and FPGAs, using Xilinx’s Deep
Learning Processor Units (DPUs). The framework also generates
the communication codes required to connect the other system
components with the implementation selected. This approach ad-
dresses design-space exploration challenges, system architecture
definition, and improves implementation and training processes
by saving time and effort.

Index Terms—AI, CNN, FPGA, UML, automatic generation,
design space exploration

I. INTRODUCTION

Artificial Intelligence (AI) has emerged as a critical research
and development area due to the impressive performance of
Deep Neural Networks in multiple applications [1]. However,
these capabilities come with high computational requirements.
Satisfying them is a complex task. High-end microprocessors
incorporate multiple CPU cores and co-processors for parallel
operations, such as SIMD [2] instructions and GPUs. Al-
specific implementations on FPGAs have also been proposed.

Al applications on cloud-based systems have limitations in
terms of real-time needs and data privacy, leading to a trend of
deploying AI models directly to edge devices. This approach
offers advantages like reduced latency, improved privacy and
security, and cost savings [3]. Engineers face challenges in
mapping Al components to resources, especially with FPGAs.

The difficulty of using FPGAs limits their widespread
adoption, as they require hardware description languages like
Verilog or VHDL. High-level synthesis (HLS) tools provide
an alternative, allowing code generation from languages like
C/C++ [3]. However, working at higher abstraction levels can
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reduce circuit efficiency and demands a good understanding
of the underlying hardware layer and tool capabilities.

In the Al field, simplicity is favored, with frameworks like
TensorFlow [4], PyTorch, and Keras in Python being widely
used. However, the difference between VHDL and Python
programming poses an additional challenge.

FPGA implementations offer more alternatives than CPUs
or GPUs, making the exploration of cost and performance
complex. A holistic approach that considers application de-
tails and platform capabilities is necessary. Flexible design
flows capable of generating multiple implementations across
different hardware resources (CPUs, GPUs, FPGAs) with low
design effort are required, covering the entire design process
from specification to implementation.

This paper proposes a UML-based design flow where neural
networks are initially specified and then automatically gener-
ated and trained using TensorFlow. The approach also enables
automatic mapping of models to FPGAs using Xilinx’s Deep
Learning Processor Units (DPUs) [5]. This approach addresses
design-space exploration challenges, system architecture def-
inition, and improves implementation and training processes
by saving time and effort.

In summary, this paper introduces improvements in speci-
fying neural networks in UML and automating the generation,
training, and implementation of network models on different
devices, including FPGA implementations.

II. STATE OF THE ART

Deep neural networks (DNN) are commonly implemented
on CPU, GPU, and FPGA devices. Tools like TensorRT [20],
ONNX Runtime [21], TVM [22], nGraph [23], Core ML [24],
and OpenVINO [25] facilitate the generation and optimization
of AI models for various hardware platforms. However, the
use of FPGAs in these tools is not fully covered, leading to
the emergence of research solutions that span cloud-based and
edge-based deployments.

In cloud-based deployments, [6] surveys FPGAs in the
cloud and introduces the Open Cloud Testbed, which incorpo-
rates network-attached FPGAs. At the edge level, [2] and [1]
propose hardware and software co-design implementations on
the Ultrascale+ ZCU102 platform.



Several works explore application-independent architectures
and optimizations. For example, [7] accelerates the writing
digital neural network of the MNIST dataset on an FPGA
platform, while [8] review computations and optimizations in
DNN models across different hardware platforms.

To address the challenge of manual coding, alternatives pro-
pose automatic generation of hardware description language
(HDL) codes for DNN implementation [9], [10], [11]. Some
works integrate hardware accelerators from C codes, as [12]
with Xilinx Vitis-HLS and [13] using Xilinx SDAccel for
parallel acceleration of DNNs with OpenCL.

Recent approaches with Xilinx FPGAs have shifted from
ad-hoc accelerators to using Xilinx’s Deep-learning Processing
Units (DPUs) for efficient Al service implementation. Various
alternatives, including [14], [15], [16], and [17], employ DPU-
based CNN models on FPGAs for hardware acceleration.

Using DPUs enables a systematic approach to explore
different design alternatives. [18] analyzes runtime, energy
consumption, and tradeoffs in accuracy, runtime, cost, and
energy consumption when using different DNN topologies,
DPU configurations, and FPGA models.

However, there is a lack of approaches that integrate FPGA-
based accelerators with CPUs and GPUs in the entire system,
particularly with the software subsystem, and explore map-
ping alternatives for DNNs across different resources. This
paper proposes automatic generation from UML models as a
foundation for this exploration process. Previous works have
explored using UML models as inputs for different steps
of the design process, as virtual simulation [19] and code
synthesis [27], but not specifically for DNNs or component
implementation on different resources, including FPGAs. The
idea of specifuing DNNs directly in the UML model, instead
of using sparated solutions [27] enables integrating the DNN
design flow together with the rest of the system design. This
solution improves activities such as maintenance or system
redesign, since less files and tools are required.

Design space exploration and automatic code synthesis
from UML models have received significant interest in recent
years, although none of the existing approaches focus on
DNNs or component implementation on diverse resources like
FPGAs. The subsequent sections present a novel approach that
addresses these objectives.

III. PROPOSED DESIGN FLOW

In the context of automating the generation and deployment
of deep learning solutions across various platforms, several
challenges in neural network and runtime software generation
need to be addressed. The proposed design flow aims to be a
comprehensive solution to these challenges and an overview
is shown in Fig. 1. The design flow comprises three phases
labeled on the figure 1 as system specification, software
generation, and platform deployment.

The proposed solution employs a UML (Unified Modeling
Language) diagram in its first phase for a comprehensive
description of neural networks as an integral component of
a complete system, encompassing its detailed specifications
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Fig. 1. Design flow.

and training characteristics. This UML diagram provides a
graphical representation of the neural network structure, lay-
ers, connections, and training configurations.

During the software generation phase, third-party propri-
etary tools (Vitis Al) and a developed Python library are used
to automatically generate the neural network graph and the
corresponding runtime software based on the target platform.
This automation streamlines the implementation and deploy-
ment process, ensuring compatibility and efficiency.

In the platform deployment phase, the generated neural
network graph and runtime software are ready for performing
data inference on the selected device, enabling the deployment
of deep learning solutions across different environments.

The following sections will provide a more detailed expla-
nation of the different phases.

IV. UML MODEL

The proposed flow begins with generating the UML model
of the system, which includes the neural network information
along with other functional components, interconnections with
external components, hardware mapping, and the environment
model. UML modeling is conducted using the Eclipse platform
with the Papyrus plugin. The UML model serves as input for a
dedicated plugin developed for this research, which generates
the necessary configuration files and executable codes for the
subsequent design flow steps.

A. UML system modeling

The UML modeling methodology used is based on the
approach proposed in [27]. It defines system functionality by
specifying the corresponding C++ code files. Communications
are represented by service calls encapsulated within interfaces
located in ports. Ports define both required and provided
services of each component.

This methodology is extended in this research to support the
modeling of neural networks as system components. The appli-
cation is described by creating instances (UML “Properties’)
of these network components, being their ports interconnected
using UML connectors. These connectors represent function-
call connections between components requiring services and



the components providing (implementing) them. It is important
to note that a component can act both as a client and a server
if it has multiple ports for multiple connections.

The model is further enriched by adding the software and
hardware resources that constitute the HW/SW platform. The
main SW resource is the operating system where different
components are assigned, while HW resources include the
modeling of processing elements such as GPP, DSP, and
GPUs.

Additionally, the methodology allows capturing buses,
memories, caches, and other relevant attributes to characterize
them. The HW/SW platform is described by creating and
interconnecting instances of these HW/SW resources. This
additional information is not used within the flow presented
in this paper, but it can be used for other purposes, such as
documentation or performance simulation.

B. Modeling Al components

In the presented proposal, neural networks are modeled
as UML components within the system. These components
are specified using the "NNComponent” stereotype and de-
scribed using a Composite Structure Diagram that represents
the network architecture. The diagram consists of multiple
properties representing different layers of the network and their
characteristics. The layers are interconnected using arrows
(abstractions) to indicate their placement in the overall model.

A network component is defined with a single port including
the execution of the network inference as a service. The service
is defined as a function with three arguments: the number of
inputs for inference in a call, a buffer containing the input
data, and a buffer for the inference outputs. Buffer sizes are
calculated based on the first and last layers of the network.
Additionally, in the composite diagram, the port is connected
to the first and last layers using arrows (abstractions).
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Fig. 2. UML Neural Network component.

The network description can also be hierarchical. In com-
plex network models, blocks of layers can be repeated to
increase network accuracy. In this methodology, these blocks
can be created as new components representing sub-networks
composed of these layers. Each sub-network component has
its own diagram describing the block of layers as mentioned
above. The sub-network port is optional, but none, one, or two
ports can be used to improve the visualization of the network
architecture. Layers modeling a network (not a sub-network)
are specified with the "NNLayer” stereotype (see an example

in Fig. 2), including several parameters to describe the layer
details such as type, filters, size, stride, batch normalization,
and activation function.

In convolutional network design, a set of six fundamental
nodes is proposed to fulfill most computational and topological
requirements. These nodes include convolution, connected,
maxpool, and averagepool. They can be grouped based on
their computation and layer contribution to the network.

The convolution and connected nodes can introduce up
to three layers and are responsible for the network’s main
computation. The max pooling and average pooling nodes
introduce a single layer each, specifically dedicated to their
respective pooling operations.

In addition to the computational nodes, two topological
nodes have been proposed: the residual block and the incep-
tion block. These nodes introduce one layer each and offer
alternative topological configurations compared to sequential
network design. The residual block combines two branches by
adding their outputs, while the inception block concatenates
the outputs of multiple input branches.

V. SOFTWARE GENERATION AND PLATFORM DEPLOYMENT

The second and third phases of the design flow are covered
in detail in this section. Various devices are considered for
the development of both phases, including CPU, GPU, SoC
FPGA, and PCIe FPGA. This variability in the target device
results in distinct workflows for both the runtime software and
the neural network graph generation process.

A. Runtime Software generation

The generation of runtime software is a crucial step in
executing the neural network graph on the target platform.
To generate device-specific functional Python/C++ software,
a Java plugin has been developed. The UML system speci-
fication provides essential information for the generation of
runtime software. Once the runtime software is generated, it
is used to create software components responsible for tasks
such as neural network graph loading, data input handling,
inference execution, and output management.

The execution process varies depending on the target device.
GPU/CPU implementations utilize the TensorFlow inference
engine for graph computation, while FPGA implementations
rely on proprietary framework. For FPGA-based devices, the
runtime procedure is facilitated by the XIR (Xilinx Interme-
diate Representation) and VART (Vitis Al Runtime) libraries.
These libraries are essential in enabling the following steps:

1) Implementing the DPU on the FPGA platform.

2) Loading the model weights and instructions from the
host into the FPGA.

3) Transferring input data from the host to the memory of
the FPGA device.

4) Initiating the DPU inference process by sending a start-
ing signal.

5) Waiting for the inference to complete, indicated by an
inference end signal from the DPU.

6) Reading the data inferred by the DPU.



The depicted steps in Fig. 3 offer a view of the tasks
executed by the runtime software in both SoC FPGA and
PCIe FPGA devices. These steps emphasize the collaboration
between the CPU and FPGA during the inference process.
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Fig. 3. CPU-FPGA execution flow.

B. Model generation

The course of action for neural network graph generation
varies significantly depending on whether it is designed for
CPU/GPU or FPGA deployment. Both methodologies share
an initial part, but the FPGA-specific workflow includes ad-
ditional steps. The initial part, shared by both workflows,
consists of 4 stages represented by square white boxes in
Fig. 4. The resulting model obtained from this part can be
directly used on CPU/GPU. For FPGAs, three additional
stages numbered from five to seven in Fig. 5 are required.
To implement the tasks and stages common to both targets,
a Python library and a Java plugin have been developed.
For the FPGA-centric process flow, the specific stages are
implemented using the Vitis Al framework provided by Xilinx
for developing Al solutions on their commercial products.

The first stage, implemented as a Java plugin, translates
the UML model specification into several configuration files
that serve as a starting point for the next stage. These files
capture the details of the desired neural network, including its
architecture, layer types, neuron numbers, activation functions,
and other training features.

The next stage generates two TensorFlow graphs: one for
training, including nodes for cost function, optimization al-
gorithm, and network architecture with trainable parameters;
and another graph for inference, without the training-specific
nodes. This stage decodes the configuration files into Python
objects and generates TensorFlow nodes to form the graphs.

The third stage involves training the generated graph using
the specified dataset. After training, a post-processing step

adjusts the graph nodes storing the optimized parameters for
inference, ensuring consistency between different implemen-
tations of the same layer. However, this stage can be skipped
if an optimized weight file is provided as part of the UML
specification beforehand

In the final stage, a process known as “weight freezing” is
performed. This involves consolidating the optimized weights
or parameters obtained during training and replacing the
tf.variable nodes in the graph with t#f.constant nodes. This
ensures that the model’s weights remain constant during infer-
ence, reducing memory consumption and improving efficiency.
The resulting network model can be used on CPUs and GPUs,
while FGPAs requires additional steps.
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Fig. 4. CPU/GPU neural network graph design flow.

For FGPA implementation, next, the “decent q” tool, added
to TensorFlow’s “contrib” module, performs graph quanti-
zation. This process converts the graph’s parameters and
activations into lower-precision data representations, reducing
storage space.

For the following stages, specific Xilinx tools are necessary.
These tools are compatible with various machine learning
frameworks, but our design exclusively utilizes TensorFlow.
To achieve compatibility, Xilinx employs an intermediate
representation language that standardizes graphs from different
machine learning frameworks.

In the sixth stage, the quantized graph in TensorFlow
format is converted into a common intermediate representation



language compatible with the Xilinx compiler, making it
independent of the specific framework used for graph design
at the software level.

The sixth stage standardizes graphs from different machine
learning frameworks into a common intermediate represen-
tation language compatible with the Xilinx compiler. This
enables seamless integration and optimization for deployment
on Xilinx platforms.

The seventh and final stage involves compiling the graph in
the XIR format to the instruction set of the specified DPU. This
compilation process translates the intermediate representation
into specific instructions that the DPU can efficiently execute.
Compiling the graph to the DPU’s instruction set enables
seamless deployment and execution on the target hardware,
maximizing performance and efficiency.

These stages collectively ensure a comprehensive design
flow for model generation and deployment, taking into account
the specific requirements of different target devices.
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Fig. 5. FPGA neural network design flow.

VI. RESULTS

Three different neural networks and their respective runtime
software have been generated for four different platforms to
validate the preservation of performance metrics compared to
manual implementations. The chosen ones for implementation,
namely VGG, ResNet, and GoogleNet, are popular state-
of-the-art architectures in the field of Convolutional Neural
Networks (CNNs). Residual Networks (ResNet) and Inception
Networks, such as GoogLeNet, represent significant variations
in CNNs when compared to classical architectures like VGG.
While traditional approaches focused on improving perfor-
mance by increasing the network size, ResNet and Inception
introduced innovative network topology to enhance perfor-
mance and capacity without disproportionately increasing the
number of parameters.

Each network has been deployed on different platforms:
Intel Xeon Gold 6138 with 20 cores and 40 threads, Nvidia
Quadro RTX 4000, PCle ALVEO card U50 with AMD Ul-
traScale+ architecture, and ZCU102 board with Zynq Ultra-
Scale+ MPSoC. In the FPGA platforms, different DPU have
been utilized. The ALVEO U50 implements a single core of
the DPUCAHX8H with three process engines. In contrast, the
ZCU102 has a single instance of the DPUCZDXS8G configured
for maximum operation with 4096 MACs per clock cycle. The
performance of each network on each platform, measured in
frames per second, is reported in Table 1.

They have been tested with a Fashion MNIST dataset
consisting of 28x28 pixel resolution images, and the frames
per second values have been obtained from the execution of
1000 images.

TABLE I
FPS MEASURED FOR THE PROPOSED METHODOLOGY
Devi- FPS performance
ces ResNet50 VGGI16 GoogLeNet
Quadro RTX
4000 2487.0 10832.9 40713.6
Intel Xeon
40 core CPU 428.1 1588.6 9479.9
ALVEO U50 840.8 634.3 3785.9
ZCU102 197.1 115.0 1385.0

The results in Table 1 are presented as evidence of the
validity of the applied methodology, without the intention of
comparing speed performance between different platforms,
which is beyond the scope of this work. The executions
on FPGA systems have not been optimized to achieve the
maximum frames per second ratio allowed by the technology.
The strength of the proposed methodology lies in its ability to
automate the deployment of neural networks as part of a larger
system on different platforms without compromising accuracy
across implementations.

VII. CONCLUSIONS

This research proposes a comprehensive design flow that
overcomes the challenges of implementing deep neural net-
works on different platforms. It combines UML modeling, au-
tomatic code generation, and deployment processes to address
the limitations of traditional approaches.

UML modeling enables precise definition of neural net-
works, which can be converted into TensorFlow graphs.
Automatic code generation reduces knowledge requirements
and coding times, enabling easier exploration of the different
design alternatives. TensorFlow is directly used to execute the
networks on CPUs and GPUs. For FPGA implementations,
specialized code generation tools transform the neural net-
works into FPGA-optimized graph formats. FPGA mapping
benefits from the utilization of Xilinx Deep Learning Processor
Units (DPUs), streamlining the design process and improving
efficiency. Thus, the proposed methodology, combining both
elements, demonstrates exceptional adaptability to diverse



hardware configurations, including CPUs, GPUs, and FPGAs.
This flexibility allows users to choose the most suitable hard-
ware and deployment options for their specific requirements,
making the approach highly robust and versatile.

The research successfully implemented three popular neu-
ral network architectures (VGG, ResNet, and GoogleNet)
on four platforms (Quadro RTX 4000, Intel Xeon 40-core
CPU, ALVEO U50, and ZCU102) and presented performance
results in terms of achieved FPS. While throughput and other
performance metrics are essential for evaluating a solution’s
effectiveness, our focus was primarily on showcasing the
versatility and scalability of our proposed approach.

Our paper aims to demonstrate the feasibility and potential
of our methodology across various hardware configurations,
including FPGAs, without delving into the intricacies of
FPGA optimization. Results emphasize the preservation of
performance metrics compared to manual implementations
and highlighting the efficient implementations achieved across
different platforms.
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